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value of the rate of propagation of the long waves at the boundary of separation corresponds 
to it. 
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ON VORTICITY-INDUCED WAVES IN A HOMOGENEOUS INCOttPRESSIBLE FLUID* 

I.M. MINDLIN 

The existence of vortex-induced waves in a homogeneous incompressible fluid 
is proved. The boundary of the vortex represents a cylindrical rotating 
fluid surface of stable form. The non-linear dispersion relation, the 
form of the vortex and the stream function are found for the vortices 
bounded by an almost circular cylinder, and for the vortex-induced waves. 
The character and special features of the oscillation of the velocity 
field are explained. 

The problem is reduced to that of proving the existence of a branching 
solution of the non-linear integral equation and to effective determina- 
tion of the solution and the bifurcation value of the parameter. An 
iterative method is proposed enabling the simultaneous determination at 
every stage of the approximation to the branching solution and bifurcation 
value of the parameter. The convergence of the method over a certain 
range of parameters is proved. 

The possibility of the existence of rotating cylindrical vortices 
retaining the non-circular form of the transverse cross-section was 
shown by Lamb /l/ who obtained the linearized dispersion relation (3.2). 
Following /2/ we shall call such vortices "vortons". Deem and Zabusky 
carried out a numerical experiment in /2/ and they suggest that the result 
proves the existence of vortons. It was also found that the rotation 
frequency of these vortices is less than the value obtained from (3.2). 

The vortons and vorton-induced waves are of interest (see the foreword 
to /2/), since the results of the numerical experiment are interpreted 
as manifestations of the "soliton-like" behaviour of the waves in a two- 
dimensional medium. 

1. Formulation of the problem. Consider the flow of an ideal homogeneous incompress- 
ible and unbounded fluid in a direction parallel to the zoy plane (Fiq.1). We denote by 

0x9 OY the fixed axes and by oz,,oy, the axes rotating with constant angular velocity Q, r. 8 
are polar coordinates in the roy plane, r, B are polar coordinates in the s,oy, plane, t 

is time, q(r, 8, t) denotes the absolute velocity of the fluid (relative to the fixed axes), 
4,. qs E Q,, is the radial and'tangential component of the absolute velocity, and 6 =rotq = 

Si,, i, is the unit vector normal to the zoy plane (and to the XlOY,) plane). When t =o, 

the ox and oxraxes coincide. 

*Prikl_Matem_lurekhan.,48,5,761-767,1984 
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Suppose I, = 1 within the fluid volume bounded by the cyl- 
inder r = R,(6, t) (r<R, inside the cylinder) and 6 = 0 outside it. 
Weshallcalla fluidvolumewithnon-zerovorticity, avortex. 

Under these assumptions a stream function Y exists connected 
with the vorticity 6 = 1 by the relation 

Y=&s;S In [P + r12 - 2rrl co3 (0, -O)] rl drl d61 41.1) 

The integration is carried out over the transverse cross- 
section of the vortex. We shall investigate a vortex whose 
boundary rotates with constant angular velocity Q retaining its 
form, so that R, (0, t) = rL (B). We use the formulas r = pr, (B), 

Fig.1 
p=e-h-2 to replace the variabLes r and 0 by p and fi respect- 
ively. In the new variables the vortex boundary is described by 

the equation p = 1, and its interior by the inequality O<p< 1, O,< fl<Zx. 
Relation (1.1) now becomes 

Y(P* P) =-& js K(p, plv I% P~)P~~,~(P~)~PIGJI (1.2) 
PI<1 

K=InW 

W = O-~*(P) + plfe2 (fU - Zpp,r, (B) r* (I%) cos (B1 - B) 
The function Y(p, p) determines the flux across the cylindrical surface fixed with 

respect to the absolute SOY axes. We introduce the stream function F which determines the 
flux across the cylindrical surface fixed with respect to the rotating ~1% axes. If P(r, e) 
is a point in the xoy plane (i.e. P is fixed relative to the 
point in the 

xoy axes) ;: e Q ttN is a 
xloy, plane coinciding at the given instant t with P (i.e. - - , then 

the two stream functions at the corresponding points are connected by the relation 

F (Q) = Y (P) - V,SW 

The vortex boundary is fixed with respect to the z,oy, axes and the vorticity of the 
fluid particle is preserved. This implies that F = con& at the vo&ex boundary, i.e. 

Y (1; fi) - I/, Qr,* (fl) = c0 = const 1.3) 

Relation (1.3) represents a non-linear integral equation for the function r,, (p). An 
integro-differential equation for r* @) was constructed and used in /2/. It can be confirmed 
that after integrating along the boundary, the equation leads to (1.3). 

The equations (1.2), (1.3) are written in dimensionless coordinates. The dimensional 
unit length R. and the time To are chosen frcan the conditions 

fR 

R& 1 r,z(ff)dfS=2S, c=l 
0 

0.4) 

Here S is the area of transverse cross-section of the cylindrical vortex and & = To-l5 
represents the dimensional vorticity. If the vortex is bounded by a circular cylinder, then 

R, is the radius of the cylinder and r. = 1. 
Equation (1.3) has a solution r* = 4 

solutions where rL # const. The solutions 
meter Q. 

for any Q. Let us inspect other (non-trivial) 
correspond to the bifurcation values of the para- 

2. On the integral operator and certain integrals. We use the properties of 
the following linear integral operator * in constructing a non-trivial solution of the problem 

Its eigenvalues hk (p, pl) are given by the formulas 

The eigenvalue hk (p,pJ has the corresponding pair of eigenfunctions cos kfl and sin kfi, 
and hence their linear combination. The following relation holds: 

* Mindlin I.M. On the vortices in an unbounded ideal fluid. Gor'kii, Dep. at VINITI, 24.6.82, 
No.3269-82, 1982. 



552 

17’ (cl cos kfi + cI sin kfi) = h, (cl cos kfi + c, sin kp) 

The eigenfunction f. = i corresponds to the eigenvalue ho. 
Below we shall use the operator 

Tl (f(B)) = T (f(B)) lmIml = -& 1 In P - 2 cos (PI - IV1 f (Bd 44 
0 

and the formulas for the integrals 

all 

Tkn = s coa ka 
,da 

c w+Pl*-awlc~~) 
(k=O, 1, 2, . . .) 

In particular, we have 

(2.3) 

(2.4) 

(2.5) 

PI > I’* Tkl = PI (PI* Ph Tkr - Fs (Pl.‘P). Tka = Fa (PI, P) 

The derivation of (2.5) is lengthy and is therefore omitted. Formulas (2.2) are obtained 
by integrating T(ces k@) by parts and applying (2.5). 

3. Existence of a solution. The question of the existence of a solution of (1.2), 
(1.3) is of fundamental importance, because heuristically it is not at all clear whether a 
non-circular cylindrical liquid surface rotating, as if it was a rigid surface, exists. 

Th proof of the existence of a branching solution of the integral equation is usually 
carried out in two stages /3/: a) a free parameter is introduced into the equation and an 
iterative method using the theorem of the fixed point of compressive mapping is employed to 
show that a family of solutions depending on the parameter exits; b) the existence of a solu- 
tion of the branching equation containing the parameter as the unknown is proved. To construct 
the branching equation we must in fact first obtain the family of solutions of the integral 
equation. The procedure can also be applied to the problem (1.2), (1.3). 

Below we present an iterative method in which we obtain, at every step, the approximation 
to the branching solution as well as the approximation to the bifurcation value of the para- 
meter. The advantages of this method in solving the problem numerically are obvious. The 
properties of the operator (2.1) and formulas (2.5) are used to show the convergence of the 
iterations within a certain range of parameter values. 

Let us describe the method. We use the relations 

P* (8) = 1 + e co9 rnp + 6% (B), 52 = 520 + e*o (3.1) 

to introduce the parameter e into (1.31, the function u(p) to replace r* (p) and the para- 
meter 0 to replace 0; m>l is an integer. After the substitution (3.1) we write the 

integrand in the form ho j-s& +e%, + es& where h,,hl,h, does not contain e explicitly (the 
solution u (B) depends on e implicitly). Let us write 

(3.2) 

When the constants are chosen in this manner, the integral equation will not contain e 
explicitly in the zero and first power. Dividing by ea and evaluating the integrals that are 
independent of u(b)), we write the integral equation in the form 

&II. (f9 + TI (9 W - Ho (4 + sH1 (u (Bh 01 8) 

Ho (0) = - &+(~-&)cosw++ 
Without writing out a lengthy formula for H,, we note that 

(3.4) 

Here s(u) is a linear integral equation (3.3) with the following properties: 
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(3.5) 

a t-&t& do=-- : +’ m+2 

S(i)=-_t(l -&+mt S(O)=0 

Using fZ.l)-(2.5) we find, that equation (3.3) with e=O has the following solution 
(with an arbitrary oo): 

W (IN = Lo(B) =go+g,c~2MJ (3.6) 

gr----$+~ g*+a-+ 

The solution u(&e) which tends to uo@) and e-t@, corresponds to the non-trivial 

solution of the problem (1.2), (1.3). We shall obtain this solution (beginning from no (3.6)) 
by interation 

(3.7) 

(3.8) 

According to condition (3.8)) the value ot is selected so that the expansion of the right- 
hand side of the equation (3.7) and the corresponding Fourier series do not contain the 
harmonic cesn$, otherwise (3.7) wilL have no solution. 

The sequences uy, ok converge to the solution of (3.3). 
To show the convergence of the sequences s& e8 (the unboundedness of the kernel of the 

operator H, complicates the problem), we shall first consider the iterative process linearized 
in c 

(3.9) 

From (2.1)-(2.51, (3.4)-(3.6) it follows that the process (3.9) leads to approximations 
of the form 

and we have 

t+2 

@k - 00 = -‘lrba’k’, be*+‘) = m (o)k - 4) 

b,(k+‘) = me, (1 - f&m) bstt’ 

(3.11) 

bp E me C( -$ - &-)(n + blk) + bp’) - =&-I 
i>3* a;""" = met 

. I I-1 

f >k + 2, bj("= 0; f > 0, b,‘“‘= 0 

From (3.11) it follows that b,(‘)>O when f&Z(c>O) 

k 

From the estimates obtained we conclude that the process (3.9) determines the sequences 
mt and aa(fi) converging for small ma. The operator I&(a,e,e) differs from the operator 
&(u, m,O) by a term of order e. 

Estimates analogous to those obtaiined above show that additional of higher-orderinfinitesf- 
mals does not violate (for small ef the convergence of the iterative process, since the 
"unperturbed" process (3.9) converges at least as fast as a geometrical progression. 

The proof of the fact that the limit of the iterations (3.7), (3.8) is a solution of 
(3.31, is a repeat of known cases, and is not given here. 
can be reformulated in terms of the transformations 

We note, that what was said above, 
, and the proof given establishes that for 

small me formulas (3.71, (3.8) determine the compression mapping. 

4. Non-linear dispersion relation. The solution of (1.21, (1.3) can be constructed 
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in terms of series in integer, non-negative powers of e, with conditions of the type (3.8). 
The first three terms of these Series agree with the results of the first iteration (3.6)- 
(3.8). The first iteration yields the formulas 

D = rz, + e’oo + 0 @a), too== -+(m-1) 

r* (B) = 1 + 8 00s rng + 8% (go + g, cos 2m@) + e2g, co9 3rni3 + 
0 (6 

(4.1) 

(4.2) 

g,=--$(d-mm i), g, =-+m-+, 

ga = + (m = 1)(3m - 1) 

Y (p, B) = YO + eY1 + E2Yt + esY8 + 0 (6’) 

p<C Yo ---+=pp’); p>1, ‘fPo=+inp 

Yl = Yl.1 cos nz(3, I* = Yy,,, + Y,,, ~0s 2mF 

(4.3) 

YP.0 = (+gP++jP4++--+Pm 

p>i, Y,J -+ &p-m 

Ye,Z=~(m-_)4~~-m-_~-~” 

Y%O = + go - ++(Bo++)lnP+-+P-m 

Y, = Y,,, cos rnfl + YB,s co9 3mS 

p<L Ys.i=(-+m2 ++m-+)p*+ 
\ 

y3,3 = + g3 ( PX -&Pq + 

+821[Pa-P=P*m+(1 -&)f-q- 

-$(m -l)p”‘++(2m-~)p=-&-(3, 

( 3 m -$m+?iB;;i- P ) 

n- l)pfrn 

p-p.1, Y,,=-+-mm2 +&-t$mp-em+ (-$m-++& Pwm ) 
Y3.3 = +- gs (1 - & P-y + 

&2[- 1 fp-“+p-Z”- 
( 
1 +&)p-3m] + 

2 
’ (m+ 1)V+ -z---x + (2m + 1) p-l” - -&- (3m + 2) p+” 

To obtain the representation indicating thelimits of applicability of the fOr?tIulaS 
obtained, we will compare the numerical and analytic results. The following values for the 
vortex boundary parameters were found in /2/ for the given values of the vortex area s= 5, 
its period of rotation T= 20 and wave number m= 3: the smallest and largest radius Ai- 1.056 
and A,- 1.59i, and the amplitudes of the harmonics 00 = 1.250, a,,, - 2.394*iO-1, a+,,,== 608.10'', dam== 
2.04910'=. 

Let us find the corresponding parameters forthe analytic solution. When m= 3,. (4.2) 
yields 

r, (6) = 1 + ecos36 f ~~(-1.75 + 1.25 cos66) -t- 2e3c089fi (4.4) 

When jeI<0.4, the right-hand side of (4.4) attains minimum rl at 6-x/3 and maximum ra 
at 6- 0, so that r, - rt = 2e + 4ea. We find R, and e from the conditions R, (s* - ~1) - R, - RI = 
0.535, xRf (i - 3ea) - 5, where the latter is obtained form (1.4), (4.4). Thus for the numerical 
solution we have the corresponding analytical solution with parameters R, = 1.334 and e= 0.187. 
According to (4 .l) we have T= zX/B== IQ.90 for the analytical solution. Neglecting the 
correction term Go, we obtain T = 13.86, and the following values for the amplitudes of the 
harmonics: a, = (1 - 1.75 E*) R. = 1.2% a, = Roe = 2.499.10-‘, aa,,, = 1.25 R,s’= 5.855.10-=, cram = 2eaRo = 
t.756.1O-1. 

Another three sets of parameters were obtained by numerical methods for m = 3, T = 20.5; 
VE = 4, 2' = 17,0; FR = 4, T = 17.5 (in all cases we had S = 5). The corresponding parameters of the 
analytic solution were E = 0.2184, T= 20.30; B = 0.0925, T = 17.04; e== 0.1399, T= 17.44. 

Thus the non-linear dispersion relation exhibits a high degree of accuracy within the 
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range ImeIg0.5. Formula (4.2) yields, in this range, result differing from the numerical 

results by 5-7%. Fig.1 depicts the vortex boundary constructed from (4.4) for E= 0.2. 

5. Velocity field. The character and specific features of the oscillations. 
The components of the absolute velocity are connected with the stream function by the relations 

-0.06 
‘t 

1 

Fig.2 shows curves constructed from formulas (4.3), (5.1) 
for m = 3, E = 0.2. The curves show the distribution of the 
quantities Q, and Qe = qb- go(r) as a function of the radius 
I, for fixed 8 and over a quarter period time interval, for 
;~~phases fi = 0, fi = n/6, p = n/3, fi = n/2 where go(r) = aY, 
r T is the tangential component of the velocity of the fluid 
particles of the circular vortex (i.e. in the case when E = 0). 
Curves 1-3 depict Qg(r) at fJ= 0, p = n/6, p = n/3 respect- 
ively. When fl=x/2, the graph of Q@(r) coincides with 
curve 2. Curve 4 depicts q, (r) for fi =d2; q, =0 with p = 0 
and #3 = n/3. When fi=nlG, the graph of the function q?(r) 
and curve 4 are mutually symmetrical with respect to the r 
axis. The curves also represent the graphs of Qe (r) and 

4, (r) at the same instant t, with an interval of the angle 8 
equal to A9 = n/6. The interval A6 represents a quarter of 
the angular period of the oscillating velocity field. The 
dashed line shows the time-averaged position of the curves 

Fig.2 Qs (r). The graphs show that the vortex induced waves are 
localized near the vortex within 2-3 of the mean radii RO. 

It can be shown that not only the approximate solution, but also the exact solution of 
the problem is invariant with respect to rotation by an angle 9 = him. 

The results obtained show that the system in question is different from the many known 
conservative mechanical oscillating systems. In a typical mechanical system undergoing 
oscillation, the kinetic energy is converted over a half-period into the potential energy of 
an "elastic element" and vice versa. The graphs show that in the system in question the 
maximum deviations of the velocity components from their mean value are reached with a 
corresponding shift in time and space of approximately a quarter of a period, so that the 
kinetic energy is "pumped" during the oscillations from radial to tangential displacements 
and vice versa. 

Finally we note that the operator (2.1) and formulas (2.5) can be used to construct a 
class of steady cylindrical vortices in which the vorticity and stream functionare connected 
by a non-linear relation, and a class of non-steady vortices in a heavy fluid with piecewise- 
constant density, just as was done * (*see the previous footnote.) for axisymmetric vortices. 

REFERENCES 

1. LAMH Ii., Hydrodynamics. Cambridge: Univ. Press, 1932. 
2. DEEM G.S. and EABUSKY N.V., Solitons in Action. (Russian transl.), Moscow, Mir, 
3. VAINBERG M.M. and TRENCGIN V.A., Theory of Branching in Solutions of Non-linear 

Moscow, Nauka, 1969. 

1981. 
equations. 

Translated by L.K. 


